CCS in Alaska – Regulatory and Commercial Factors for Transoceanic CO2 Transport

Energy Security with Decarbonization Symposium 2025, Tokyo 資源の安定供給と脱炭素化シンポジウム2025

Presented by:

Ryan Fitzpatrick, Commercial Manager Alaska Department of Natural Resources, Division of Oil & Gas September 5, 2025

Potential Alaska Carbon Storage Basins

Figure 1. Map of Alaska with significant sedimentary basins with potential for CO2 storage overlaid.

(Courtesy of Alaska Department of Natural Resources)

Carbon Regulatory Matrix

	Carbon Transoceanic Shipping	Carbon Storage (Offshore)	Carbon Storage (Onshore)	Carbon Storage Leasing	Long-Term Storage Monitoring
International Regulation	London Protocol (Bilateral Agreement)	London Protocol (Bilateral Agreement)	-	-	-
U.S. National Regulation	-	Safe Drinking Water Act + Marine Protection, Research, & Sanctuaries Act	Safe Drinking Water Act	Multiple (Federal Lands)	Safe Drinking Water Act
Alaska State Regulation	<u>-</u>	"An Act Related to Carbon Storage" - House Bill 50 (Section 39)	House Bill 50 (Section 39)	House Bill 50 (Section 18) for State Lands + Private Landowners	House Bill 50 (Sections 18 & 39)

International Regulatory Framework

- London Protocol: 2009 Amendment allows for cross-border shipments of CO₂ for marine transportation and subsurface disposal.
- Basel Convention: Regulates cross-border movement of hazardous waste, unlikely to extend to CO₂.
- U.S. is a signatory but not a ratifier—bilateral agreements required for CO₂ shipments.

U.S. Regulatory Framework

- Safe Drinking Water Act (SDWA) regulates underground CO₂ injection, administered by EPA through Class VI well permits.
 - Permitting includes geologic review, modeling, seismic risk, public comment.
 - Alaska is pursuing primary enforcement authority for Class VI wells from U.S. Environmental Protection Agency.
- Marine Protection, Research, and Sanctuaries Act (MPRSA) regulates sub-seabed CO₂ storage.
 - 2021 amendment clarified that MPRSA does not cover CO₂ storage, but exception may only extend to Federal leases.

Alaska Regulatory Framework

- Alaska passed comprehensive CCUS regulatory structure in 2024 via "An Act Related to Carbon Storage" (House Bill 50 / HB50).
 - Shared oversight for CCUS between AOGCC (well control) and DNR (leasing).
 - Includes post-closure trust fund to cover long-term liability.
- Pore space ownership in Alaska is well-settled (pore space follows mineral interests).
- Most land is State, Federal, or Native-corporation owned; large contiguous lease tracts.

Commercial Screening Factors

<u>Factor</u>	Explanation			
Geology	Adequate reservoir; "stacked" zones			
Steaming Distance	Shorter travel distances reduce costs			
Ports & Infrastructure	Deepwater access critical; existing or expanded facilities			
Onshore Transmission	Distance between port and storage location impacts costs			
Oil & Gas Activity	Established service sector reduces labor cost			
Gas/CO ₂ Injection	Use of CO ₂ for Enhanced Recovery improves economics			
Environmental	Evaluation of specific sites for environmental mitigation costs			

Additional Commercial Factors

- Integration of CCUS with existing Oil & Gas operations: Reduce labor and logistics costs, EOR opportunities, depleted reservoirs, synergies with developing proposals.
- Port infrastructure developments: Potential to leverage possible port facility developments, especially for near-Asia shipments.
- Shipping Economics: CO₂ Carriers likely to be single-product cruises. Future hydrogen carriers may be dual-use, allowing improved economics for back-haul.

THANK YOU!

For more Information:

Fulford, N., Zhang, T., Paine, H., and Fitzpatrick, R. 2025. "CCS In the State of Alaska – Regulatory Framework and Commercial Selection Criteria for Transoceanic CO2 Imports." Proceedings of the Society for Petroleum Engineers' Asia-Pacific CCUS Conference, August 2025, Kuala Lumpur, MY.

Ryan Fitzpatrick
Alaska Department of Natural Resources
Division of Oil & Gas
Commercial Manager
1-907-269-8801
Ryan.Fitzpatrick@alaska.gov